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Abstract: Procedures for classifying, enumerating, and representing topological^ the steric courses of chemical 
reactions which interconvert symmetric molecules are presented. Reactions are defined in terms of permutation 
operations, and the symmetry of reactant and product configurations is then used to define classes of symmetry-
equivalent reactions. The resulting classification schemes are shown to be readily interpretable in terms of tradi­
tional stereochemical concepts. Topological representations of reaction pathways are discussed, and procedures 
for calculating various properties are provided. Finally, some examples are treated which demonstrate the utility of 
this approach. 

The steric course of a chemical reaction is defined by 
the stereochemical relationship between reactants 

products. Once this relationship is established, mech­
anistic information is obtained in that certain mech­
anisms are ruled out. Traditionally, mechanistic 
studies of tetrahedral substitution reactions have relied 
heavily on the stereochemical relationship between re­
actants and products. Since there exist only 3 !/3 = 
2 permutational isomers of a "tetrahedral" C3v mole­
cule R3MY, the substitution reaction 

R3MX + Y — > R3MY + X 

may proceed either with "inversion of configuration" 
or "retention of configuration." No other distinct 
possibility exists, assuming that both reactant and 
product have the same symmetry. For more complex 
systems, the situation is far less clear. Consider for 
example the case of octahedral substitution. Although 
there exist 5!/4 = 30 permutational isomers of C4t 

"octahedral" molecule R5MY, one might expect 30 
distinct steric courses for the reaction 

R5MX + Y — > R4MY + X 

assuming both reactant and product have the same 
symmetry. It will be shown below, however, that this 
number is too large. 

This paper addresses the problem of defining, clas­
sifying, enumerating, and representing all distinct 
changes of stereochemistry which may accompany the 
reactions of symmetric molecules. In the first section, 
the concept of configuration is generalized and reac­
tions are defined in terms of stereochemical change. 
Then two simple exchange reactions are examined 
closely in order to clarify the physical significance of 
these definitions. In the next section, the relationship 
between reaction mechanism and steric course is dis­
cussed. Finally, three examples are treated. 

I. Definitions 

When symmetric molecules undergo chemical reac­
tions, the steric course is not uniquely defined by the 
stereochemical relationship between reactants and 
products unless labeling techniques are employed. 
This is because permutational isomers of molecules are 
not physically distinguishable unless chemically iden­
tical ligands are labeled. Labeling may be achieved by 
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nuclear spin states, isotopic substitution, or chemical 
substitution such that the effect of the labels on the 
chemical properties of a molecule is negligible. We say 
that the ligands are chemically identical but distin­
guishable by labels. Accordingly, the point group of 
a molecule is defined by neglecting the labeling of 
chemically identical ligands and considering only the 
symmetry of the unlabeled molecule. Molecules which 
are identical when labeling is ignored are called chem­
ically identical molecules even though the labeled mole­
cules may in fact be distinguishable by physical tech­
niques. 

Consider for example Figure la, which may represent 
permutational isomerization of the C2„ molecule (CH3)2-
NPF4. Mathematically, the chemically identical F 
ligands are distinguishable by the indexed labels B2, B3, 
B4, and B5. Physically, the steric course of the reaction 
has been studied by nmr spectroscopy using the spin 
states of the 19F nuclei as labels.2 Figure lb may 
represent the cis-trans isomerization of Ru(PR3)4H2.3 

Here again, the steric course might be studied by nmr 
spectroscopy using the 31P and 1H nuclear spin states 
as labels. Figure lb may also represent the cis-trans 
isomerization of Ru(CO)4(SiCl3)2.

4 The steric course 
of this reaction might be studied using isotopic labeling, 
i.e., 13CO and 12CO as labeled ligands. 

The dynamic stereochemistry of isomerization reac­
tions has been investigated in detail.5-8 Reactions are 
defined by permutation operations, and sets of sym­
metry equivalent reactions, reactions formally non-
differentiable in a chiral environment, are defined such 
that the steric course of equivalent reactions is identical. 
Thus the number of classes of symmetry equivalent re­
actions is the number of theoretically measurable 
changes in stereochemistry which might accompany a 
given isomerization. Different definitions of symmetry 
equivalent reactions are necessary since the nature of 
the environment and the nature of the experimental 
measuring techniques used determine whether or not 
certain changes in stereochemistry may be differentiated. 

Figure lc-f may represent reactions of Mn(CO)5X 
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+ CO,9 Pt(NHs)3Cl+ + Cl-,10 PCl3 + Cl2,11 and SF4 

+ SF4,12 respectively. The types of reactions shown 
in Figure 1 are closely related. Two successive ex­
change reactions shown in (c) may result in permuta-
tional isomerization. In (d), forward reaction followed 
by reverse reaction may also result in permutational 
isomerization. Similarly, association followed by dis­
sociation as in (e), (f), or (g) may result in a net exchange 
reaction. If the dissociation reaction shown in (f) is 
followed by association according to (g), polytopal 
isomerization reactions result. The purpose of this 
section is to express the relationship between these reac­
tions in mathematical terms. Then the techniques 
already used to treat isomerization reactions may be 
applied to more complicated sequences of reactions. 
We begin by generalizing the definitions of concepts 
used in the treatment of isomerization reactions. 

A. Configurations and Their Symmetry. A con­
figuration is defined here as a set of labeled ligands which 
have been assigned to labeled sites called skeletal posi­
tions. Assume that a set of n (unidentate) ligands con­
tains «i ligands of a given chemical identity, n2 ligands 
of another chemical identity, and n3 ligands of a third 
chemical identity. Thus, n = «i + H2 + ns. These 
ligands are assigned labels from the set L = (Ai, 
A 2 , . . •, A n , , BnJ+I, Bm+2, . . ., BMi+ri2, C m + B 2 + i , Cj11+7J2+2, 
. . . , Cn) such that the letter indicates the chemical 
identity of each ligand and the integral subscript pro­
vides a unique index for each ligand. The skeletal 
positions of a configuration are assigned labels from 
the set S w = {siw, s2

w, . . ., sn
w} such that ligands of 

types A, B, and C occupy skeletal positions labeled by 
*i w , V 11 {ww , w w W sm+ni" j) and 

\sni+n^\ sm+n^2
n, . . ., i 'n

w}, respectively. Here, the 
superscript W identifies the geometry of the configura­
tion, while the integral subscript provides a unique in­
dex for each skeletal position. 

Chemically speaking, a configuration is a set of 
labeled, rigid molecules having a definite orientation in 
space. Mathematically, a configuration is conveniently 
described by a 2 X n matrix 

S/i 

123. . .n 
jkp. . .q 

where ligand indices are listed in the top row, and below 
each ligand index is written the index of the skeletal 
position which that ligand occupies. The superscript 
W identifies the geometry of the configuration, and the 
subscript / is an integral label for each matrix. The 
reference configuration is defined by 

iy 
S/e 

123. . .n 
123...« 

Examples of this nomenclature are shown in Figure 2. 
Although a configuration is defined in terms of 

oriented molecules, we shall be concerned here with 
molecules which are free to rotate and translate in space. 
Therefore, different configurations having the same 
geometry may be equivalent in that they represent the 
same set of labeled molecules oriented differently in 

(9) T. L. Brown, Inorg. Chem., 7, 2673 (1968), and references therein. 
(10) F. Basolo and R. G. Pearson, "Mechanism of Inorganic Re­

actions," Wiley, New York, N. Y., 1967, Chapter 5. 
(11) R. Hoffmann, J. M. Howell, and E. L. Muetterties, J. Amer. 

Chem. Soc, 94, 3047 (1972), and references therein. 
(12) E. L. Muetterties and W. D. Phillips, ibid., 81, 1084 (1959). 
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PERMUTATIONAL ISOMERIZATION 

POLYTOPAL ISOMERIZATION 

SUBSTITUTION 

ASSOC IATION- DISSOCIATION 

ASSOCIATION- DISSOCIATION 

ASSOCIATION - DISSOCIATION 

Figure 1. Some representative types of chemical reactions inter-
converting symmetric molecules. 

space. Such is the case in Figure 2 for the pairs of con­
figurations shown in (b), (f), (j), (1), and (n). Equiva­
lence between two configurations (s)4

w and (l)^ may be 
defined by a permutation operation which represents 
translation and/or rotation of molecules in the con­
figuration. By "translation" we mean permutation of 
chemically identical molecules. Since the indices of 
the skeletal positions serve as "ligand coordinates," we 
let the permutation operations act on these indices. 
Thus the permutation represents a "coordinate trans­
formation." For example, the equivalence of con­
figurations (!

s)e
Q and (s)iQ shown in Figure 2a is expressed 

by the relation 

s, 
= <7iQQ V 

where q fi®= (1)(24)(35)QQ, acting on the indices of the 
skeletal positions, represents a twofold rotation opera-
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same letter is used to identify this group and the geom­
etry of the configurations which the group acts on. 
Since W^™ represents rotations and/or translations of 
molecules, we now seek a more precise definition of 
Jfww in terms of permutation group representations of 
the rotational point groups of the molecules in a con­
figuration. 

If a configuration contains only one molecule, then 
the proper configurational symmetry group is a permu­
tation group representation of that molecule's rotational 
point group which acts on the indices of the skeletal 
positions. The rotational point group of the molecules 
in configurations shown in Figure 2f is C2. It contains 
two operations: the identity operation ui and a two­
fold rotation operation H2. When U1 and M2 act on the 
indices of the skeletal positions shown in Figure 2e, the 
operations « i u u = (1)(2)(3)(4)(5)(6)(7X8)UU and w2

uu 

= (18)(27X36)(4)(5)UU are generated. These two 
operations form the group Uvv, and we say Uvv = 
C2

UU. 
If a configuration having geometry W contains m 

chemically nonidentical molecules, and J?< is the rota­
tional point group of the rth molecule, then Www is 
generated by letting all possible combinations of per­
mutations 
Letting \A 

in i , ™ R2 and Rm
ww operate. 

denote the number of elements in an arbi­
trary set A, we have jH^wj =|i?1

wwj • |i?2 

i?m
w w | . Formally, the proper configurational symmetry 

group is defined by 

( f ™ = £ R WW 

- " \ : ,̂ v 

(if,- (WlMVA)' 

-WK!) 

Figure 2. Six pairs of configurations having different geometries 
are shown in the two columns on the right. To the left of each pair 
is shown the indexing of skeletal positions which allows definition 
of the appropriate (j) matrices. 

tion. When qf
QCi acts on the bottom row of C)iQ, the 

bottom row of (l
s)e

Q is generated 

Mathematically, the permutation operation (1)(24)(35) 
means "leave 1 fixed, replace 2 with 4, replace 4 with 2, 
replace 3 with 5, and replace 5 with 3." Chemically 
speaking, the operation (1)(24)(35)QQ means "the ligand 
in position SiQ is left fixed, the ligand in position s2

Q is 
moved to position s4

Q, the ligand in position sfi 
is moved to position s2

Q, the ligand in position 
s3

Q is moved to position s6
Q, and the ligand in posi­

tion 55
Q is moved to position s3

Q." 
All the operations H>JWW which represent rotation 

and/or translation of molecules in a configuration 
having geometry W form a group W^^ called the 
proper configurational symmetry group. Note that the 

where the summation implies direct sums.13 For the 
configurations shown in Figure 21, Ri = C3 and R2 = 
Z>„. C3

YY contains the operations (1)(2)(3)YY, (123)YY, 
and (132)YY, while Dm

YY contains the operations 
(4)(5)YY and (45)YY. Thus 7 Y Y = C3

YY + Z>„YY con­
tains |C3

YY | • |Z)„YYj = six operations. 

y<™ = (1)(2)(3)(4)(5)YY 

y2
YY = (1)(2)(3)(45)YY 

>>3YY = (123)(4)(5)YY 

j4YY = (123)(45)YY 

^6
YY = (132)(4)(5)YY 

jeY Y = (132)(45)YY 

Assume a configuration having geometry W contains 
m molecules and all m molecules are chemically iden­
tical. Therefore all these molecules have the same 
rotational point group R, and the group Www will con­
tain ji?ww |m operations representing all possible com­
binations of proper rotations of molecules in the con­
figuration. In addition, however, there will be m! 
operations in W™™ which represent all possible per­
mutations of the m chemically identical molecules. 
Since any combination of rotations can be combined 
with any one of the ml permutations of entire mole­
cules, the group W^w will contain a total of m!ji?ww |m 

operations. Using standard notation, www = 
Sro[i?ww], the composition of "Sn around i ? w w , " u 

where Sn is the symmetric permutation group degree m 

(13) For a rigorous definition of this operation see: R. W. Robin­
son, /. Combinatorial Theory, 4, 184 (1968), or F. Harary, "Graph 
Theory," Addison-Wesley, Reading, Mass., 1969, pp 163-164. 
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which contains all ml possible permutations of the m 
chemically identical molecules. The configurations 
shown in Figure 2n contain two chemically identical 
molecules having rotational point groups C2. Here, 
m = 2 and R = C2. Thus Z z z = S2[C2

ZZ\ contains 
m\-\Rzz\m = 2!-22 = 8 operations. 

ZiZ Z 

Z2
ZZ 

Z3
Z Z 

Z 4
Z Z 

7 ZZ 

Z6
Z Z 

27zz 

zs
zz 

= (lX2X3)(4)(5X6)(7)(8y 

= (13)(24X5)(6)(7)(8)ZZ 

= (1X2X3X4X57X68) z z 

= (13)(24)(57)(68)zz 

= (15)(26)(37)(48)zz 

= (1735)(2846)zz 

= (1537)(2648)zz 

= (17)(28)(35)(46)zz 

The first four operations represent rotations of the 
molecules in the configuration, while the last four rep­
resent rotations combined with permutation of the two 
chemically identical molecules, i.e., rotations combined 
with translations. 

In the most general case, a configuration having ge­
ometry W will contain m molecules having different 
chemical identities and mt molecules of chemical iden­
tity i having rotational point group R1. Thus 2i=imm{ 

equals the number of molecules in the configuration. 
Applying the definitions given in the preceding para­
graphs, the proper configurational symmetry group is de­
fined by 

m 

W™ = £ SM**] (l) 
t = i 

and the number of operations in this group is 
m 

iwwwi = n^i^^'i** (2) 
i = i 

Two configurations ('s)j
W and (j) ;

w having the same lig-
and set and the same geometry W are defined to be 
equivalent if 

for some w s
w w e TFWW. These configurations are non-

equivalent if eq 3 does not hold. 
Another useful permutation group may be generated 

which represents the operations in the full point groups 
of molecules in a configuration. The full configura­
tional symmetry group Tfww is defined by 

jf-ww = £ S7J^wW] ( 4 ) 
t' = l 

where R( is the full point group of molecules in the con­
figuration having chemical identity i. The number of 
operations in Tfww is 

m 

I ]f-WW| = J J w 4 ! jig.WW|m,. (5) 
i ' = l 

Clearly, Www is a subgroup of Tfww 

If H>iww e www, we say_H>iWW represents rotation of 
configuration. If w,w w e TT'WW, then ®4

WW may repre­
sent improper rotation (and possibly translation) of 

one or more molecules in the configuration. If ©<ww 

represents improper rotation (and possibly translation) 
of all molecules in the configuration, we say ©<ww rep­
resents inversion of configuration. Accordingly, two 
nonequivalent configurations (,)jW and C)^ are de­
fined to be enantiomeric if eq 6 holds for some ® t

w w 

e Tfww which represents inversion of configuration. 

(Q." - **™('r <6» 
If eq 6 does not hold, then nonequivalent configura­
tions (J)JW and (J)/* are diastereomeric. 

Two examples should make the physical significance 
of these definitions clear. For the configurations 
shown in Figure 2d, the operation 24

TT = (18)(27)-
(36)(45)TT represents inversion of configuration. Since 
CV = WXlV and (i).* * //TC),* for any t^ e T", 
the configurations C)e

T and C)iT are enantiomeric. For 
the configurations shown in Figure 2j, the operation 
Xixx = (l)(2)(34)(5)xx represents inversion of configura­
tion, here, reflection operations acting on both mole­
cules.14 However, the operation (l)(2)(34)(5)xx also 
represents rotation of configuration. Thus the con­
figurations (s)ix and C)e

x = *iXXC)ix are equivalent con­
figurations. Whenever all molecules in a configura­
tion are planar, operations which represent rotation of 
configuration also represent inversion of configuration. 

B. Reactions and Their Symmetry. A reaction is 
defined here as a transformation which converts one 
configuration into another configuration such that 
stereochemical change occurs. Mathematically, this 
transformation is defined by an operation ht

wv which 
transforms (l

s)j
v, the reactant configuration, into C)*w, the 

product configuration, by letting the permutation opera­
tion hi act on the indices of the skeletal positions listed 
in the bottom row of (j);

v and replacing the super­
script V by W.15 The reactant and product configura­
tions may have the same geometry, i.e., the case V = 
W is allowed. The only restriction is that reactant 
and product configurations must have the same ligand 
set. 

The reactant and product configurations of the reac­
tion shown in Figure la both have the same geometry. 
Using the indexing of skeletal positions defined in 
Figure 2a, the reactant configuration is defined by 

/ A « = /12345\Q 

\s), \12345/ 

and the product configuration is defined by 

/ A « = /12345V> 
V A \13452/ 

The reaction is defined by h(
QQ = (1)(2345)QQ since 

(s)2
Q is generated when fit acts on the indices of the 

indices of the skeletal positions listed in the bottom row 
ofC),Q 

/12345\Q /12345\Q 

Chemically speaking, (1)(2345)QQ means "the ligand in 

(14) It is assumed that ligands may be represented by points and 
therefore must have reflection symmetry, i.e., be achiral. 

(15) In common usage, the word "reaction" may refer collectively to 
a set of "reactions," i.e., permutations, as defined here. The intended 
meaning of the word should be clear from context. 
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A v 
S/ 

position «iQ is left fixed, the ligand in position s2
Q is 

moved to position s3
Q, the ligand in position s3

Q is moved 
to position s4

Q, the ligand in position sfi is moved to 
position 55

Q, and the ligand in position s5
Q is moved 

to position s2
Q." 

In Figure Id, the reactant configuration is defined by 

/12345\ v 

\12345/ 

and the product configuration by 

' Z \ x
 = /12345\ x 

\l2435y 

if skeletal positions are labeled as in Figure 2g and i, 
respectively. The reaction is defined by ht

xv = 
(l)(2)(34)(5)xv since 

We describe the reaction /zx
xv = (l)(2)(34)(5)xv by 

saying "the ligand in position i i v is moved to position 
six, the ligand in position s2

v is moved to position s2
x, 

the ligand in position s3
v is moved to position s4

x, the 
ligand in position s^ is moved to position S3

3S and the 
ligand in position s6

y is moved to position s6
x ." 

The reader may verify that the reactions shown in 
Figure If and g are defined by (12)(3)(456)(7)(8)uz and 
(12564)(3)(7)(8)TZ, respectively, if skeletal positions are 
labeled as shown in Figure 2. 

Given the set of n ligands labeled by L = (Ai, 
A 2 , . . . , A711, D7n^i, r>ni_|_2,. . . , oni+n„ C r e i +„j+i , Cm+n2-(-2, 

. . ., Cn} as above, we define a permutation group H, 
the group of allowed permutations, which acts on the set 
of numbers ( l , 2,. . ., n). Operations in H permute 
the numbers in the sets (1, 2,. . ., Wx), (^1 + 1, «i + 
2,. . ., «i + H2), and (m + H2 + 1, H1 + n2 + 2,. . ., n) 
among themselves in all possible ways. H therefore 
contains WISW2SH3! operations. Formally, H is defined 
by 

where Sn,. is the symmetric group degree w< and the sums 
imply direct sums. 

The set of all possible reactions ht
vv which transform 

configurations having geometry V into configurations 
having geometry W is defined by the permutation opera­
tions in H, the group of allowed permutations. This 
set is called # w v , the superscript indicating the geom­
etry of product and reactant configurations. Unless 
V = W, products of the type ht

wv-hjwv are undefined, 
since 

and /z4
wv by definition may only act on configurations 

having geometry V. Thus Hyrv is not a group. The 
inverse of /^wv , called the reverse reaction of ht

WY, is 
defined by 

The product of A4
WV and « / w is defined by 

and indicates reaction A^vw followed by reaction /j<wv. 

HyfW is a group with a product operation defined by 
h^w.hjww = Qn-h,)^. # w w contains W^^ and 
F w w as subgroups. If each operation in Hww acts on 
C)eW 

|/fwwj = WiSn2Iw3! 

different configurations are generated, and this set of 
configurations contains all possible configurations 
having geometry W. There is therefore a one-to-one 
correspondence between configurations having geom­
etry W and operations in the group Hww. Two con­
figurations «iWWC)e

w and w(
ww('s)6

w are equivalent if 

A * w C ) w = 
W ^ - V 

A w /A w 

si. \s I. 

for some w ^ e Www. A complete set of equivalent 
configurations therefore contains | W^'w\ configurations. 
The group HVfW can be partitioned into disjoint sets of 
operations HA5rw«(

ww such that each set corresponds 
to a complete set of equivalent configurations. The 
set of permutations wwwht

ww is called a right coset of 
W/Ww in F w . If we select one element from each 
right coset of Www in Hww, we form a set of coset 
representatives Cw . Each c*w e Cw thus uniquely 
specifies a complete set of equivalent configurations, 
and the set Cw represents a complete set of nonequiva-
lent configurations having geometry W. Since a com­
plete set of equivalent configurations contains |ff^'w 

operations, if we let Iw be the total number of non-
equivalent configurations having geometry W, then 
IW-\WWW\ = | # w w ! = WiSw2Sn3S. Accordingly, we 
define Iw to be the configuration count and 

Iw = 
Hv H i I n 2 S n 3 ! 

WT JJm i!|i?1
wwjm.-

(7) 

using eq 2 to calculate |WWW|. Equation 7 may be 
rigorously derived noting that Iw = |CW| and following 
well-known procedures outlined in ref 6. 

Since reactions are defined in terms of oriented mole­
cules but reactant and product molecules are assumed 
here to be free to rotate and translate in space, different 
reactions may in fact represent the same change in 
stereochemistry. For example, let 

«<vw 

and 

If 

and 

w „ v w y/ 
S n 

= W," 

(8) 

(9) 

(10) 

(H) 

then « (
v w and h„vw represent the same change in stereo­

chemistry since the reactant configuratons as well as 
product configurations in eq 8 and 9 are equivalent. 
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Mathematically, we substitute eq 10 and 11 into eq 8 K = Vi-Il1-Wj (17) 

A(vw.„,rw? = v, 

This implies 

y/ 

(vr'-hrWrf™ Jl\ w 

T 
and comparing with eq 9 

In genera], hiyw and /z ;
vw are defined to be nondijfer-

entiable in a chiral environment if eq 12 holds for some 
vk

yy
 e ^VV a n d Wjww e ,pww. 

/zj = vk-h-jW, (12) 

The reactions /J,VW and A,vw are dijferentiable in a 
chiral environment if eq 12 does not hold. In less pre­
cise chemical terms, reactions which are nondiffer-
entiable in a chiral environment represent the same 
stereochemical change, i.e., have the same steric course. 

Just as the concept of equivalent configurations im­
plies the concept of reactions differentiable in a chiral 
environment, the concept of enantiomeric configura­
tions implies a corresponding relationship between re­
actions. Let p< w and C) iw as well as (W and ('s)0

y 

be enantiomeric configurations. Thus 

A w /A w 

where » , w w represents inversion of configuration, and 

1\ V
 = , v v / ^ V 

• v • < 1 4 > 

where vs
yy represents inversion of configuration. If 

and 

T-WT 
l\ v / A w 

'\ = hvwf'\ 

(15) 

(16) 

then reactions formally nondifferentiable from hT
yw 

and hs
yw occur with equal probability in an achiral en­

vironment. Substituting eq 13 and 14 into eq 15 we 
obtain 

Q;M^T-^^-Q; = 
{Va-l'hr-Wpr 

Comparing this result with eq 16 

Accordingly, a "mirror image" hp
yw of a reaction 

hyvf is defined by eq 17, where ^ w and w,w w both 
represent inversion of configuration. If A„vw and 

hQ
yw are also differentiable in a chiral environment, 

they are defined to be enantiomeric reactions or simply 
enantiomeric. We then say that hv

yw (or A,vw) is a 
dzz'ra/ reaction. If /zP

vw is nondifferentiable from its 
"mirror images" in a chiral environment, then /z„vw 

is an achiral reaction. If two reactions are differ­
entiable in a chiral environment and are not enantio­
meric, they are defined to be diastereomeric reactions 
or simply diastereomeric. 

One further type of symmetry equivalence between 
reactions is of interest. Two reactions /z4

vw and / z / w 

are nondifferentiable in a totally symmetric environment 
if eq 18 holds for some vh

yv e P v v and some w ;
w w e 

jfww if e q 1 8 d o e s n o t h o l d ; htvw a n d hjvw a r e 

ht = vk-hrwi (18) 

differentiable in a totally symmetric environment. Note 
that eq 17 and 18 differ in that vt

yy and w,w w both rep­
resent inversion of configuration, while £>*vv and w ;

w w 

are arbitrary operations in Vyy and ifww, respectively. 
As was discussed above, the set Hyw contains all 

possible reactions which interconvert configurations 
having geometries V and W. Since we are concerned 
here with the steric course of reactions, we are inter­
ested primarily in different sets of reactions nondiffer­
entiable in a chiral environment as defined by eq 12. 
The number of these disjoint sets contained in Hyw is 
called the number of reactions differentiable in a chiral 
environment. A complete set of reactions differentiable 
in a chiral environment is generated by selecting one 
reaction from each set of reactions nondifferentiable in 
a chiral environment. A complete set of reactions 
differentiable in a totally symmetric environment and 
a complete set of diastereomeric reactions may be sim­
ilarly generated. 

It is often a great help when dealing with complex 
problems in dynamic stereochemistry to determine the 
number of diastereomeric reactions or reactions differ­
entiable in a chiral or totally symmetric environment 
before actually identifying the reactions. Accordingly, 
formulas are provided here which enumerate these re­
actions. These formulas will not be discussed in detail 
at this point. Their application and significance will 
be explained later in the context of specific examples. 

First, we define the generalized cyclic type (J1, J2,..., 
Jn1; At1, /c2 , . . . , km; h, I2,. . ., In,) of a permutation ht t 
H. Recall that elements in H permute numbers in the 
sets {1, 2 , . . . , m], {nx + 1, /I1 + 2,. . ., /T1 + m\, and 
{"i + «2 + 1, «i + n2 + 2,. . ., «i + n2 + n3} among 
themselves. The array (J1, J2,. .., j ' B 1 ; At1, At2,. . ., At„2; 
h, h, • • •, Ld indicates that the permutation h( contains 
J'J, cycles of length p which permute the numbers {1, 
2,. . ., m} among themselves, kq cycles of length q which 
permute the numbers Jn1 + 1, /I1 + 2 , . . ., M1 + «2} 
among themselves, and lr cycles of length r which per­
mute the numbers (/J1 + n2 + 1, «i + n2 + 2 , . . ., /J1 + 
«2 + n3} among themselves. 

To count the number of reactions ht
yyf in the set 

jjvw differentiable in a chiral environment, eq 19 is 
used if V ^ W, i.e., the reactant and product configura­
tions have different geometries.16 

(16) Equations 19-21 may be derived following procedures outlined 
in ref 5, 7, and 8. Equation 22 is derived in the Appendix. 
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D VW ~~ j i /VVl I li/Vl'WI 2-1 V " ; i J ! . . . in , , t lSa . . . tn 2 , ! l l2 - - - In , J X 

(." jvi.-.)nl,kik2...k„2,hti...l„3) X 

ni m n3 

II WP1') II (*«!«*•) H ( ^ ) (19) 
P = I J = I r = 1 

Here, Dvw is the number of reactions differentiable in a 
chiral environment, the summation extends over all gen­
eralized cyclic types of permutations in Vyv and Www, 
and h jlj2...j„lMki,...k„2,hh...iKl and h ^a...^11JM2...*ni, hi,...t»» 
are the numbers of operations in Vvy and Www, 
respectively, having cyclic type (j\, J1, ..., j H l ; ku 

k'2, • • •, km; / i , I 1 , . . . , lm). 

If reactant and product configurations have the same 
geometry W, the number of reactions differentiable in 
a chiral environment is D'ww 

D' — Dww 1 (20) 

where Dww is calculated using eq 19. 
To count the number of reactions A (

v w e HYW differ­
entiable in a totally symmetric environment, eq 21 is 

Dvw — 

J1TrVW 
(hv 

jij2-.-jni,kxk$. ..kni>hh.. .1, 

( " JlU---ini,klk2...kni,hlt..'lni) X 

.,)X 

n Upip'') n fc,!p*o n W-) (2i> 
P = I 5 = 1 r=1 

used if reactant and product configurations have differ­
ent geometries. In eq 21, Dvw is the number of reac­
tions differentiable in a totally symmetric environment, 
and all other symbols were defined above for eq 19. 
When reactant and product configurations have the 
same geometry W, Dww is given by eq 21 if i p v w ^ 
W™ and D W = D'ww if l f w w = W™w 

If reactant and product configurations have different 
geometries, eq 22 is used to count the number of dia-
stereomeric reactions in the set Hyw. Here, Dv< 

W' IS 

D vw 
1 

FVV J^WWj + \y, \w VVV,H/WW;F'VV Www 

\(hy 

• -In11^lIa. . -An2, hfy. . . U3) "T" 

K." JIjV-. J^n, fclA 2...A^2, J 1 ^ . . . J n 3 X " J1J2.. • Jn1,^]A::... A.'ns,h (2... Jr13) J X 

Til 712 T13 \ 

P = I s = l r - 1 J 

(22) 

the number of diasteromeric reactions; JK'VV | and 
[ Wwv\ are the number of operations in F v v and Tfww, 
respectively, which represent inversion of configuration; 
the summation extends over all generalized cyclic types 
of operations in V and TI' which represent rotation and/ 
or inversion of configuration; /zv'Wl...,„JlWtl...*„„,,!»...i„, 
and_/zw'W2.. .j«, ,Mi.. .*„, iih... („, are the numbers of operations 
in V and TI', respectively, having cyclic type (ji, J1,. . ., 
Jm', ku k>,. . .fc„,; /i, I2,..., In,) which represent inver­
sion of configuration; and all other symbols were de­
fined above for eq 19. When reactant and product con­
figurations have the same geometry, D'w>w> = Dw>w> 
— 1 is the number of diastereomeric reactions. 

F rom the symmetry of eq 19, 21, and 22, it is clear 
t h a t DW7 = Dvw, Dwv = Dvw> a n d Dviw> = Dwiv>. 

Table I. Definitions Relating the Structural Stereochemistry 
of Configurations and the Dynamic Stereochemistry of Reactions 

Configurations" & Reactions6 •" 

I. Equivalent 

II. Nonequivalent 

V Enantiomeric 

©; - *-o; 
!. Diasteromeric 

cr—cr 

I. Nondifferentiable in a Chiral 
Environment 

A„vw = P4W. A8VW. ^ww-

II. Differentiable in a Chiral 

Environment 

A,vw ^ ^ w . ^ v w . ^ w w 

A. Enantiomeric 

A/w = PnW1A4VW11B11Ww 

B. Diastereomeric 

0 (!),w and C.)jw are two configurations having the same geom­
etry W. b wA

ww and Vkvv are elements in the proper configura-
tional symmetry groups )fww and Kvv, respectively. w„ww and 
vm

VY are operation in the full configurational symmetry groups 
lyvrw ancj j7vv; respectively, which represent inversion of configura­
tion. ' A,vw and /i5

vw are reactions in the set # v w . 

C. Summary. Table I summarizes the more im­
portant definitions provided in this section. The 
definitions relating the structural stereochemistry of 
configurations retain the physical significance of the 
words equivalent, nonequivalent, enantiomeric, and 
diastereomeric as conventionally used to describe the 
stereoisomer^ relationships between molecules or 
groups in molecules.17 Equivalent configurations are 
physically indistinguishable if molecules in the con­
figuration are free to rotate and translate in space, while 
nonequivalent configurations are in theory distinguish­
able. Within a set of nonequivalent configurations, 
however, certain pairs of configurations are physically 
indistinguishable in an achiral environment. These 
configurations are called enantiomeric. Diastereo­
meric configurations are nonequivalent configurations 
which are in theory physically distinguishable in an 
achiral environment. 

The definitions relating the dynamic stereochemistry 
of reactions are based on the same physical criteria, as 
shall be made clear in the next section. Reactions 
nondifferentiable in a chiral environment are precisely 
those reactions which are physically indistinguishable 
if reactant and product molecules are free to rotate and 
translate in space. Reactions differentiable in a chiral 
environment are in theory distinguishable by physical 
methods and may be described as representing differ­
ent steric courses. Within a set of reactions differ­
entiable in a chiral environment, certain pairs of reac­
tions are physically indistinguishable in an achiral en­
vironment in that they must occur with equal probabil­
ity. These reactions are called enantiomeric. Dia­
stereomeric reactions are reactions differentiable in a 
chiral environment which are in theory physically dis­
tinguishable in an achiral environment. 

II. Discussion 

In this section we shall examine the steric courses of 
some very simple exchange reactions in order to dem-

(17) K. Mislow, "Introduction to Stereochemistry," W. A. Benjamin, 
New York, N. Y„ 1965. 
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onstrate the physical significance of the definitions 
given above. 

We consider first the exchange reactions intercon-
verting configurations having the geometry shown in 
Figure 3a. Here, the ligands are labeled by L = }Ai, 
A2, A3, B4, B5} and the skeletal positions are indexed as 
shown in Figure 3b. The proper configurational sym­
metry group is Www = C3

WW + R^w,ls and the full 
configurational symmetry group is Tl~ww = C 3 t

w w + 
^ 3 ww is These groups are representations of the 
permutation groups W and Tf defined by the following 
operations. 

W1 = wi = (1)(2)(3)(4)(5) 

W2 = w2 = (123)(4)(5) 

W3 = ws = (132)(4)(5) 

wt = (12X3X4X5) 

w, = (13X2X4)(5) 

^e = (1X23X4X5) 

Operations wiww, w2
ww, and w3

ww represent rotation 
of configuration, while ®4

WW, wi
ww, and ©6

WW repre­
sent inversion of configuration. The group of allowed 
permutations H = S3 + S2 contains 3! -2! = 12 opera­
tions. Three of the 12 operations in Hww represent rota­
tion of configuration and the remaining nine operations 
represent exchange reactions and permutational isom-
erization reactions. The configuration count Iw 

equals 3! -2!/3 = 4 (see eq 7). A complete set of four 
nonequivalent configurations is shown in Figure Ic. 
Note that a complete set of nonequivalent configura­
tions is not uniquely defined, but represents an arbi­
trary choice of one configuration from each of the In­
sets of equivalent configurations. 

The number of reactions differentiable in a chiral 
environment, D'ww> equals Dww — 1 (see eq 20). To 
calculate Dww using eq 19, we need the generalized 
cyclic types of operations in PPWW: for wiww, (ju y2, 
h\ Zc1, Jt2) = (3, 0, 0; 2, 0) and for w2

ww and u>3
ww, 

U\,ji,h; fci, ki) = (0, 0, 1; 2, 0). Therefore fcw
30o,2c = 

1 and /JWOOI,2O = 2. Substituting in eq 19 

Dww = { l / ( 3 - 3 ) } { M - 3 M ' - 2 M * - + 

2-2-1!-3'-2!-12S = 4 

and therefore D'ww = 3. Since we are only interested 
in exchange reactions, not permutational isomerization 
reactions, we calculate D'c,c, = 1, the number of per­
mutational isomerization reactions differentiable in a 
chiral environment7 which interconvert the permuta­
tional isomers of the C3c molecule in the configuration. 
Hww therefore contains only D'ww — D'Cic, = 2 ex­
change reactions differentiable in a chiral environment. 
Figure 3d shows a complete set of exchange reactions 
differentiable in a chiral environment. Note that a 
complete set of reactions differentiable in a chiral en­
vironment is not uniquely defined, but represents an 
arbitrary choice of one reaction from each set of reac­
tions nondifferentiable in a chiral environment. The 
arrows drawn in Figure 3d connecting ligands in the 
reactant configurations do not represent mechanistic 

(18) Rsi is the infinite point group consisting of all proper rotations, 
all reflections and inversion at a point. R3 is the subgroup of Rn which 
contains only proper rotations. 

»5 

Figure 3. Configurations and reactions defining the stereochemis­
try of exchange reactions discussed in the text. 

pathways but merely provide a convenient description 
of the stereochemical change involved. We see that 
/ziww implies "retention of configuration" while /?2

WW 

implies "inversion of configuration." 
For completeness' sake, we note that both /iiww and 

/22
ww are achiral since 

w. , • A S
W W - ® 4 W W = Aj W 

Thus /ziww and h2
ww are diastereomeric reactions and 

form a complete set of diastereomeric exchange re­
actions. We verify this by calculating the number of 
diastereomeric reactions in /fww, D'ww = Dww — 
1, and calculating D 'Cl>Cl> = DCi>Cl< — 1, the number 
of diastereomeric permutational isomerization reactions 
in # w w . Then D'ww - D'cc must equal two. 
From eq 22, 

Dww = {1/(3-3 + 3-3)}((l-l + 0-0)-3!-l3-2!-l2-l-

(2-2 + 0-0)-l!-31-2!-l2 + 

(0-0 + 3-3)-l!- l1- l!-21-2!-l2} = 4 

Dci'ci' = 2 

and therefore 

3 - 1 = 2 Dww D' CJ'CV 
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Figure 4. Association-dissociation reactions implying exchange 
reactions shown in Figure 3. 

The number of reactions differentiable in a totally 
symmetric environment equals DWw since lfww ^ 
JPWW. From eq 21 

Z W = {l / (6-6)}{M-3!- l»-2M a + 

2-2-1! -3^2I • I2 + 3-3• 1! - 1 J • 1! -21-2! • l2} = 

1/36{12 + 24 + 36} = 2 

The number of permutational isomerization reactions 
differentiable in a totally symmetric environment,7 

•Dc3.cs.) is one. Hence, Dww — DCz,C3, = 1, and all 
exchange reactions are nondifferentiable in a totally 
symmetric environment. The reactions fciWW and h2

ww 

are since u>4
ww-/!1

ww = h2
ww. In general, reactions 

nondifferentiable in a totally symmetric environment 
are those which cannot be distinguished by physical 
techniques incapable of discerning enantiomeric mole­
cules. Thus the steric course of two reactions non­
differentiable in a totally symmetric environment may 
be different, but this difference will not be measurable 
by certain physical techniques. 

It is well known in carbon chemistry that "tetrahedral" 
exchange reactions of the type being discussed may pro­
ceed with "inversion" (h2

ww) or "racemization" (a 
combination of h1

VfW and h2
ww) depending on whether 

the mechanism is associative or dissociative. To show 
the formal relationship between association-dissociation 
reactions and exchange reactions, we will discuss these 
two possibilities in detail. 

Consider first the sets of reactions Hvw and ITf,X! 

which interconvert configurations having geometries 
W and U shown in Figure 4a. Skeletal positions are 

interest here is the set of operations generated when the 
reaction / i 3

u w is followed by the reaction hwv. If the 
molecules in the configuration having geometry U are 
assumed to be free to rotate and translate in space, 
this set of operations is defined by h^U^hi™ = 
(/I3C//I3)WW = 11*™. The permutation group U, defined 
by the representation Uvv, contains these operations. 

U1 = (1)(2)(3)(4)(5) 

U2 = (123X4X5) 

M3 = (132X4X5) 

u4 = (1X2X3X45) 

M5 = (123X45) 

M6 = (132X45) 

M7 = (12)(3X45) 

M8 = (13X2X45) 

M9 = (1X23X45) 

M10 = (12X3X4)(5) 

M11 = (13X2X4X5) 

Un = (1X23X4X5) 

We now examine the set of operations [/ww. This set 
contains operations in W7™ as well as reactions in 
7fww. Three operations are identical with the three 
operations in W w w : M,WW = W!WW, M2

WW = w2
ww, and 

M3
WW _ W3WW There are in addition three sets of opera­

tions, each set containing three reactions nondifferenti­
able in a chiral environment, namely. M4

WW. M6
WW, and 

W6ww. M?ww5 U8W1 a n d U l w w . U10Ww1 U11Ww1 a n d U12W, 

Each of these sets may be represented by a reaction in 
# w w , i.e., M 4

W = / i ! w w , «7WW = /i2WW, and M1 0
W W = 

h4
ww. We thus partition t / w w into four sets, each con­

taining three operations. This result is summarized 
in the relationship 

^ V W P 3 _ 1 ) W U : *»uw) = 3ew w + 3/24
ww + 3/Ziww + 

3VVW (23) 

Here ^^((hr1^; h3
VVf) represents the unique parti­

tion of (hr ! ) w u Uvvhsvw into sets containing operations 
in H/WW or reactions in /fww which are nondifferentiable 
in a chiral environment. 

Let us consider the situation where the configurations 
having geometry U represent metastable reaction 
intermediates and the ligands occupying skeletal posi­
tions 54

u and s5
u are present in equal concentrations. 

Since the coefficients of the terms in *w*((hr1)wv; 
hsvw) are identical, each of the following possibilities 
will occur with equal probability every time dissociation 
is followed by association: (i) operations in Www (no 
net reaction), (ii) reactions nondifferentiable from h4

wvr 

in a chiral environment (permutational isomerization 
indexed in Figures 3b and 4c. Uvv = D3

UU + S2- reactions), (iii) reactions nondifferentiable from h2
ww in 

[Rzvv] and therefore \UVV\ = , ^ 3 - -, •<.: • ^3-
6-2 = 12. Also, Iv = |/fuuj/£/uu[ = 3!-2!/12 = 1. 
This implies that D w r = £>uw must equal one and all 
reactions hiVVf t Hvw are nondifferentiable in a chiral 
environment. Discussion may therefore proceed in 
terms of the achiral dissociation reaction hd

VVf = 
(l)(2)(3)(4)(5)uw and association reaction (h3™)-' = 
(A3-I)Wu = (i)(2)(3)(4)(5)wu shown in Figure 4a. Of 

a chiral environment (exchange reactions with "reten­
tion of configuration"), (iv) reactions nondifferentiable 
from h2

ww in a chiral environment (exchange reactions 
with "inversion of configuration"). If the ratios of the 
coefficients of the terms in •<Sfym<ihi-

lf'°'; hvw) do not 
represent the actual probablilities, i.e., do not have 
physical signifiance, we say that "memory effects" are 
present. Crudely, this means that a molecule remem-
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bers its past history and because of this it is more likely 
to foil ow one reaction path than another. The most usual 
type of memory effect for dissociation-association re­
actions is incomplete dissociation. Here, the molecules 
in the configurations having geometry U are not free 
to rotate and translate in space and therefore the proper 
configurational symmetry group Uvv is not physically 
meaningful. 

We now turn to the association-dissociation reactions 
of the type shown in Figure 4b. The skeletal positions 
of the configurations shown in Figure 4b are indexed 
as shown in Figures 3b and 4d. We examine only the 
operations implied by the achiral association reaction 
Ji3W = (l)(2)(3)(4)(5)vw followed by the reverse re­
action (/i3-1)wv = (l)(2)(3)(4)(5)wv = h^'y, i.e., the set 
of operations/i3

w vFv v /!3
v w = V™. The permutation 

group V, defined by the representation Vyv = Z>3
VV, 

contains these operations. 

V1 = (1)(2)(3)(4)(5) 

v2 = (123X4X5) 

, 3 = (132X4X5) 

Vi = (1X23X45) 

v, = (12X3X45) 

v, = (13X2X45) 

Following the procedure used above, we find 

*ww((/j3-i)wv. /J3VW) = 3eww + 3/;2ww (24) 

This means that if association is followed by dissociation 
as shown in Figure 4b, the only stereochemical change 
possible is that implied by /?2

WW, i.e., "inversion of con­
figuration." Permutational isomerization and exchange 
with "retention of configuration" are ruled out. 

A slightly more complicated example should clarify 
the physical signifiance of enantiomeric reastions. For 
configurations having the geometry shown in Figure 5a, 
the configurational symmetry group Xxx = Ci x x + 
i? 3

x x contains but one operation, x , x x = (1)(2)(3)(4)-
(5),x x and X s x = Cs

xx + Ru
xx contains two opera­

tions, xxxx = x,xx and x 2
x x = (l)(2)(34)(5)xx, if 

skeletal positions are indexed as in Figure 5b. The 
ligand set is labeled by L = {Ai, B2, C3, C4, C5} and there­
fore the group of allowed permutations H = S^ -\- Sx + 
S3 contains «i!n2!«3! = 1! -1 ! - 3! = 6 operations. 
Since Xxx contains only one operation. Ix = \Hxx\j 
\XXX\ = 6. D'xx = 5, D'ClCl = 1, and therefore Hxx 

contains only four exchange reactions differentiable in 
a chiral environment. A complete set of exchange re­
actions differentiable in a chiral environment is shown 
in Figure 5c. If we choose to view "tetrahedral" ex­
change reactions in terms of "inversion or retention of 
configuration," hx

xx and /r2
xx both represent "reten­

tion" while /z3
xx and /J4

X X both represent "inversion." 
Reactions hx

xx and h2
xx as well as h3

xx and ht
xx never­

theless represent different changes in stereochemistry 
(steric courses) since ligands in skeletal positions 
s3

x and s4
x are enantiotopic and are therefore not 

equivalent in a chiral environment. Chiral catalysts or 
enzymes may provide a chiral environment which 
allows preferential substitution of one of the enantio­
topic ligands.19 

(19) Cf. K. Mislow and M. Raban, Top. Stereochem., 4, 127 (1969). 

Figure 5. Configurations and reactions defining the stereochemis­
try of exchange reactions discussed in the text. 

The operation x 2
x x represents inversion of configura­

tion and 

h2
xx = xixx • hixx • &2XX = (x2-hi-x2)

xx 

/Z3
XX = X 2

X X - / ! 4
X X ' * 2 X X = (X2'hi.X2)XX 

Thus /JIXX and h2
xx as well as ha

xx and / i 4
x x are enan­

tiomeric reactions. As was pointed out above, enan­
tiomeric reactions have equal probabilities of occurring 
in an achiral environment and are physically indistin­
guishable. We see that in the case at hand, this fact is 
related to the enantiotopic relationship between ligands 
occupying positions s3

x and s4
x. 

As in the previous example, we now examine the re­
actions implied by dissociation followed by association. 
Consider the configurations shown in Figure 6a. If 
skeletal positions_are labeled as j n Figures 5b and 6b, 
the groups Xxx, Xxx, YYY, and FY Y are representations 
of the groups X, X, Y, and Y defined by the following 
operations. 

* = * i = (1)(2)(3)(4)(5) 

X2 = (1X2X34)(5) 

y, = J1 = (1)(2)(3)(4)(5) 

y* = fr = (1X2X3X45) 
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• ( l> (2 )<34) (5> 

h " ' " ( l l ( 2 ) ( S 4 ) ( 5 r 

Figure 6. Dissociation-association reactions implying exchange 
reactions shown in Figure 5. 

Xixx, yiYY, and y2
YY represent rotation of configuration, 

while X2XX, y\iY, and y2YY represent inversion of con­
figuration. Using eq 19 

DXY = DYX = { l / ( l - 2 )}{ l -M! - l 1 - lM 1 -3 ! - l »} = 3 

is the number of reactions differentiable in a chiral 
environment. Complete sets of reactions differentiable 
in a chiral environment are shown in Figure 6c. Using 
eq 22, we find DX'Y' = Dyx' = 2. The reader may 
verify that A6

YX and A5
YX as well as A6

XY and A5
XY are 

enantiomeric reactions, while A3
YX and A4

XY are achiral. 
The fact that A6

YX and A5
YX are enantiomeric again re­

flects the enantiotopic relationship between ligands 
occupying positions s3

x and 54
x, while the fact that 

A6
XY and h-XY are enantiomeric reflects the enantiotopic 

relationship between the two faces of the three-co­
ordinate molecule in the configuration having geometry 
Y,19 

Assuming that the reactions take place in an achiral 
environment, we examine the reactions implied by the 
dissociation reaction A6

YX followed by the reverse re­
action A6

XY. Since A6
YX and A5

YX as well as A6
XY and 

A5
XY must occur with equal probability in an achiral 

environment, the set of operations (A6YA6)
50S (htYhb)

xx, 
QibYhb)

xx, and (A5YA6)
XX is implied by dissociation 

followed by association. These operations are 

(h-yi-h)xx = (l)(2)(3)(4)(5)xx = * x x 

(hfyrh6)
xx = (l)(2)(3)(45)xx = A2

XX 

(hfyvhb)
xx = (l)(2)(34)(5)xx = hb

xx 

i.h-yrhb)
xx = (l)(2)(354)xx = ht

xx 

{h-yvhb)
xx = (l)(2)(3)(4)(5)xx = *xxx 

{hb-y,-hb)
xx = (l)(2)(35)(4)xx = A 1 ^ 

{hyyyh,)xx = (l)(2)(34)(5)xx = hb
xx 

(hb-yrK)xx = (l)(2)(345)xx = h3
xx 

and therefore 

# x x ( (Ar ' ) X Y ; hx
YX) = 2e w w + 2A6

WW + hww + A2
WW + 

III. Reaction Mechanism and Steric Course 

A chemical reaction mechanism is usually defined in 
terms of a potential energy surface in multidimensional 
space which indicates the potential energy of every pos­
sible geometric arrangement of the atoms comprising the 
system in question. "Low regions" on this surface 
correspond to stable or metastable configurations, and 
the mechanistic pathways are defined by "paths" on 
this surface which interconnect the low regions. It is 
possible that these "paths" are "forked" and there 
exist "junctions" at which more than two paths meet. 
Instead of actually considering the relevant parts of the 
potential energy surface and defining reaction mecha­
nisms in terms of "paths" and "junctions," it is more 
convenient from a stereochemical point of view to 
represent reaction mechanisms topologically by con­
structing a graph where points represent junctions, and 
lines represent the "paths" which interconnect them. 
These lines may be further subdivided by points which 
represent other configurations of interest. 

Such topological representations20'22 may be de­
scribed in terms of the formalisms developed above. 
Consider the topological representation of a simple 
system where each point represents equivalent con­
figurations having geometry V, W, or X. These points 
are labeled by coset representatives from the sets Cv , 
Cw, and Cx , and the total number of points thus equals 
Iv + Iw + Ix- Assume that lines connect points 
representing configurations having geometry V and W 
as well as points representing configurations having W 
and X, but no (single) lines connect points representing 
configurations having geometries V and X. Such a 
graph represents the case where reactant configurations, 
intermediate configurations, and product configurations 
have geometry V, W, and X, respectively. If only one 
mechanism interconveits reactant and intermediate 
configurations, and only one mechanism interconverts 
intermediate and product configurations, then two re­
actions, /?j,wv and Ae

xw, define the lines of the topologi­
cal representation: points ct

Y and CjW are connected 
by a line if and only if 

A iW V-Pm^'-^ = W^-C1* (25) 

holds for some vm
vv e Vvv, some wk

ww e Www, and 
A ;

wv e # w v where A*wv = Ap
wv if Aj,wv is achiral and 

(20) E. L. Muetterties, /. Amer. Chem. Soc, 91, 1636 (1969). 
(21) For a recent review, see: M. Gielen, Ind. Chim. Beige, 36, 815 

(1971). 
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/,wv = 1,WV o r a ' ' m i r r o r image" of hp
wy if hp

wy is 
chiral. Points c,w and ck

x are connected by a line if and 
only if 

h,™'-wm .w _ = x xxr x (26) 

holds for some wm
ww e W™w, some XiXX € Xxx, and 

^ xw e # x v w h e r e j x w = / , C T i f hxw i s a c h i r a l a n d 

/,xw = I)1Xw o r a " m i r r o r i m a g e " 0f ^xw i f hxw i s 

chiral. 
As was shown in ref 6 for the case of permutational 

isomerization reactions, eq 25 and 26 define topological 
representations such that two reactions are represented 
topologically in an identical fashion if the following 
conditions exist, (a) The reactions are nondifferentiable 
in a chiral environment. Reactions nondifferentiable 
in a chiral environment must occur with equal prob­
ability if molecules rotate and translate freely in their 
environment, (b) One reaction and the reverse reaction 
of the other reaction are nondifferentiable in a chiral 
environment. If a given reaction occurs in an equilib­
rium situation, the principle of microscopic reversibility 
demands that its reverse reaction also occur, (c) Any 
"mirror image" of one reaction is nondifferentiable from 
the other reaction or its reverse reaction in a chiral 
environment. When reactions occur in an achiral 
environment, a reaction and its "mirror images" must 
occur with equal probability. 

The connectivity 5V of a point ct
y is defined as the 

total number of lines which meet at that point. The 
number of these (single) lines which connect different 
points representing configurations having geometry W 
to the point c,v is denoted 8WV and thus for the case 
under discussion, 5V = dwr. For the connectivity Sw, 
however, 8W = 5VW + 8XW, since c?y is connected by 
single lines to points representing configurations having 
geometry V as well as points representing configurations 
having geometry X. Also, bx = bwx. Connectivities 
may be calculated using formulas derived elsewhere.8 

If A„AVV is achiral 

Owv — 
Vf]Hn-

1Wh7, 

and if hp^
yy is chiral 

8Wv — 
2! Fl 

Vf] hp-'Whv\ 

(27) 

(28) 

Here, j V\ is the number of operations in the group V 
and \Vf)hp-

]Whp\ is the number of operations which 
the groups V and hfxWhp have in common. Note 
that in general, dvw ^ 5WV. If V v v represents the 
transformation of configurations having geometry V 
into configurations having geometry W, then by 
microscopic reversibility, ( V v v ) _ 1 = (^ _ 1)Y W repre­
sents the transformation of configurations having 
geometry W into configurations having geometry V. 
If (A,-1)™' is achiral 

\W\ 

wr\hpVhp-A 
and comparing with eq 27, bvw does not necessarily 
equal Swv. 

In eq 23 and 24 we provided means of expressing the 
steric course of exchange reactions which proceeded 
via intermediate configurations having connectivities 

greater than two. If we wish to express the net stereo­
chemical changes implied by the sequence hP

vy fol­
lowed by / i j x w discussed above, we define 

Dx v 

* X W W ; Vvv) = Z atht
xy 

» - 1 
(29) 

Here, Dxv is the number of reactions in Hxy differentia-
ble in a chiral environment, and at is the relative 
probability of reactions nondifferentiable from ht

xy 

occurring if these reactions occur via intermediate con­
figurations having geometry W. Note that if X = V as 
in eq 23 and 24, ^ x x ( /2 jX W ; V v x ) includes an extra 
term a0e

xx which indicates the relative probability of no 
net reaction occurring each time the sequence hP 

followed by h x w occurs. If "memory effects" are 
ruled out, S?xv(A5

x1,y, Apwv) may be calculated as fol­
lows, (i) Assuming hq

xy: and Ap
wv are both achiral, 

the set of | W\ reactions ft8
xwWwwVvv = (hqWhP)xy is 

partitioned into subsets of reactions nondifferentiable 
in a chiral environment. Then at is the number of 
reactions in the subset containing reactions nondifferen­
tiable from hiXX in a chiral environment, (ii) If hq

xyy is 
achiral but V v v ' s chiral, the coefficients at are derived 
by partitioning the set of 2\W\ reactions in (hqWhv)

xy 

and (hqWhr)
xy where / j r

w v is a "mirror image" of 
/»j,wv. (iii) If V v v ' s achiral, but hQ

xy is chiral and 
hs

xy is a "mirror image" of hxy, then the coefficients G4 

are derived from the set of 2| W\ reactions in (hqWhp)
xy 

and (hsWhP)XY. (iv) If both V v v and K^' are chiral, 
V v v is a "mirror image" of Vvv> and ^ x v *s a "mirror 
image" of /!,xw, then the coefficients at are derived from 
the set of A\W\ reactions in (hpWhqf

yy, (h,Whq)
xy, 

(hpWhs)
xy, and (hTWhs)

xy. 
To consider more complicated sequences of ieactions, 

e.g., /z,UT followed by hjyv. . .,followed by ht
xv>~ 

*X T(A t
x w; / , V U . 

DxT 

may be derived in a similar fashion. 

IV. Examples 

A. Trigonal-Bipyramidal Substitution. This exam­
ple concerns reactions of the type shown in Figure 7a, 
where reactant configurations have geometry V and 
product configurations have geometry X. Skeletal 
positions are indexed in Figure 7b and c. The proper 
configurational symmetry groups are defined by Vyy = 
C2

VV + Rzyy and Xxx = C2
XX + Rs

xx, while Vyy = 
C„ v v + RJv and_X x x = C2„xx + R3i

xx. The 
groups V, V, X, and X contain the following operations 

Pl = Jj1 = X1 = X1 = (1)(2)(3)(4)(5)(6) 

V2 = ii2 = X2 = X2 = (14)(23)(5)(6) 

S3 = X3 = (14)(2)(3)(5)(6) 

v, = Xi = (1)(23)(4)(5)(6) 

The group of allowed permutations H = S4 + S1 + Si 
contains 4! -1! -1 ! = 24 operations. Configuration 
counts Iv and Ix both equal 24/2 = 12. 

The number of reactions differentiable in a chiral 
environment, Dxv, is calculated using eq 19 

Dx^ = ( 1 / ( 2 - 2 ^ 1 - 1 - 4 ! - 1 M M M M 1 + 

1 • 1 -2! -22-1! • 1! • 11J = 8 
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/ 

/ 

•(IXS1I3K4HSK6) 

• ( IK2SK4HS)I6) 

1 ^ . 
- ' 2 h X V (IZH34M5X6) 

• (I 3 4 Z H 5 H 6 ) 

\ *2 XV 
\ - ' \ "1S • Cf 3X2K-4) 

^ Y = 8 

(121(51(41ISXS) 

Figure 7. Configurations and reactions defining the stereochemis­
try of "trigonal bipyramidal" substitution reactons discussed in the 
text. 

Eight appropriate reactions are most easily derived 
following a procedure justified elsewhere:8 the set of 
12 operations which convert (l

s)e
v into the 12 non-

equivalent configurations having geometry X must 
contain a complete set of reactions differentiable in a 

/ 

W 

Figure 8. Dissociation and association reactions implying substi­
tution reactions shown in Figure 7. 

chiral environment. Eight differentiable reactions se­
lected from this set of 12 reactions are shown in Figure 
7d. The arrows drawn in the reactant configuration 
connecting the ligand labels crudely represent the per­
mutation of ligands which each reaction implies. Since 
the reactant and product configurations have different 
geometries, these arrows are somewhat ill-defined from 
a mathematical and physical point of view, but they are 
very useful for quickly identifying the stereochemical 
relationships between various reactions. For example, 
they indicate the enantiomeric relationship between 
/!5

XV and /z6
xv as well as A7

XV and #8
XV, which is verified 

by the fact that 

and 

Using eq 22 

Dx>v = 

/J6XV = ^ 4 XX - A 6 XV 1 J i 4 Vl 

/Z7XV = S 4 X X ^ 8 X V 1 J J 4 X V 

\ 2 - 2 + 2 - 2 j U 1-1 + 0 - 0 ) - 4 ! - l 4 - l ! - l M ! - 1 1 + 

(1-1 + 0-0)-2! -22-1! • I1- ]! • I1 + 

(0-0 + 2 -2) - l ! - l 2 - l ! -2 1 - l ! - l 1 - l ! - l 1 J = 6 

and therefore the reactions /*ixv, h2
xv, /!3

XV, ht
xv, A5

XV, 
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and hxv form a complete set of diasteromeric reac­
tions. 

We now examine the steric course of substitution 
reactions for two cases where intermediate configura­
tions have a connectivity greater than two. 

First, consider the sequence of reactions shown in 
Figure 8a and b. If the skeletal positions of the reac­
tant, intermediate, and product configurations are 
indexed as shown in Figures 7b, 8c, and 7c, respec­
tively, the dissociation reaction is described by hi

wv = 
(l)(2)(3)(4)(5)(6)w\ While kj™ = (l)(2)(3)(4)(5)(6)xw 
describes the subsequent association reaction. The 
groups Wvw = Z>4

WW + i? 3
w w + i?aww and TFWW = 

Z>4*ww + RH
WW_ + -R3iww are representations of the 

groups W and W defined by the operations 

W1 = W1 = (1)(2)(3)(4)(5)(6) 

W2 = W2 = (1243)(5)(6) 

w, = w3 = (1342)(5)(6) 

w4 = Wi = (14)(23)(5)(6) 

w, = W5 = (1)(23)(4)(5)(6) 

w6 = ^ 6 = (14)(2)(3)(5)(6) 

WT = WT = (12)(34)(5)(6) 

W8 = ws = (13)(24)(5)(6) 

Since |Wwwj = 8, Iw = 24/8 = 3. Reactions ^ w v 

and /i!x w are achiral since h{™ = w-^-h^-v^ and 
^1Xw = ^1XX. A ixw. JJ5WW, F r o m e q 27 

1*1 
5Wv — , 1 [ , = 2 / 2 = 1 

\vf\w\ ' 
\w\ 

wnv\ 
&xw — 

bwx — 

\w\ 
wnxi 

Xf)W 

= 8 / 2 = 4 

= 8 / 2 = 4 

= 2 / 2 = 1 

and consequently, 5V = Swv = \,hw = 8yw + bxw = 8, 
and Sx = owx = 1. These results may be checked 
using a relation derived elsewhere,8 IvbWv = Iw&vw and 
Ix°wx = Iw&xw The isomer counts and connectivities 
just calculated are of great help in constructing a topo­
logical representation. We shall however determine 
the steric course of this reaction sequence using the 
techniques presented in the previous section. The sub­
stitution reactions implied by ftiwv followed by /iix w are 
contained in the set of reactions /hx w• Pfww• h^'w = 
Wxv. Consulting Figure 7d, we note that wixv = 
/ ! l X 

W^ 

XV = /24X V- tf2
X V 

WiXY = h ^ \ W 4
X V = / ! l X V -

/ * 2 X V , W 9
X V = / i 2

x v • P8VV1 W 7 x v = /J3Xv5 a n d 

W2 

wb
y 

= /i3-f2
VV, and therefore 

¥ x v (A g 
v) = 2h™ + 2/;2

xv + 2/i3XV + Ih? 

Note that the implicit assumption has been made that 
the reaction sequence is "irreversible," i.e., dissociation 
always leads to substitution. 

Now consider an alternative reaction sequence shown 
in Figure 8e and f. Here, the skeletal positions of 
reactant, intermediate, and product configurations are 
indexed as shown in Figures 7b, 8d, and 7c, respectively. 

•II){25)[3K4)(SHT! 

Figure 9. Configurations and reactions defining the stereochemis­
try of "octahedral" substitution reactions discussed in the text. 
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<f<" 

W 

Figure 10. Dissociation and association reactions implying substi­
tution reactions shown in Figure 9. 

The dissociation reaction is described by /iiYV = 
(1)(2)(3)(4X5)(6)YV and the subsequent association re­
action by AiXY = (1)(2)(3)(4)(5)(6)XY. The proper 
configurational symmetry group of the intermediate 
configuration is 7 Y Y = TYY + J?3

YY + _R3
YY. Follow­

ing the procedure used in treating the reaction sequence 
examined in the preceding paragraphs, the reader may 
verfy that 

*x v(/*iX Y ; A1YV) = 2A1XV + 2/?3xv + 4A7xv + 4/ |gxv 

B. Octahedral Substitution. The type of "octa­
hedral" substitution reactions considered here is shown 
in Figure 9a. Skeletal positions are labeled as in 
Figure 9b and c. The group of allowed permutations, 
H = S5 + Si + Su contains 5 ! - I M ! = 120 opera­
tions. The groups V™ = C4

VV + J?3_
vv, Xxx = 

C4
XX + *3

X X , Vvv = C4„vv + i?3 i
v v and Xxx = CA

XX 

+ Rijxx are representations of the groups V, X, V, 
and X defined by 

P1 = S1 = Xl = xi = (1)(2)(3)(4)(5)(6)(7) 

V2 = v2 = x2 = x2 = (1245)(3)(6)(7) 

r. = V1 = X3 = X3 = (1542)(3)(6)(7) 

^4 = g4 = Xi = X4 = (14)(25)(3)(6)(7) 

v, = X5 = (15)(24)(3)(6)(7) 

S6 = x6 = (12)(3)(45)(6)(7) 

^7 = x7 = (14)(2)(3)(5)(6)(7) 

C8 = x8 = (3)(25)(3)(4)(6)(7) 

Thus configuration counts Iv and /* both equal 120/4 
= 30. 

DXv, the number of reactions differentiable in a 
chiral environment, is calculated using eq 19 

Dxv = {1/(4-4)} { 1 - 1 - 5 ! - I M ! - I M ! - I 1 + 

2 - 2 - 1 ! - 4 M M M M M ! - ! 1 + 

1-1-2!- 2 M l - P - I i - I M i - I 1 I = 9 

A complete set of reactions differentiable in a chiral 
environment may be derived using the procedure fol-

W 

Figure 11. Configurations describing isomerization reactions of 
IrHa(PRs)3. 

lowed in the previous example. Such a set is shown in 
Figure 9d. The number of diastereomeric reactions, 
Dx'v, is 

Dx-V = {1/(4-4 + 4-4)! {(1-1 + 0-0)-

5 ! - 1 M I - I M l - I 1 + (2-2 + 0-0)- l ! -4M!-

I 1 - I i - I M ! - I 1 + (1-1 + 2-2)2! -2M!- I M M 1 - W-

V + (0-0 + 2 - 2 ) 3 ! - I 3 I ! - 2M M M I-1 1 J = 7 

As the arrows drawn in Figure 9d suggest, A6
XV and 

A7
XV as well as A8

XV and A9
XV are enantiomeric. The 

seven reactions Aixv, A2
XV, A3

XV, A4
XV, A5

XV, A6
XV, and 

A8
XV thus form a complete set of diastereomeric re­

actions. 
We now determine the stereochemical implications of 

substitution which proceeds by dissociation as shown in 
Figure 10a followed by association as shown in Figure 
10b. The skeletal positions are indexed as shown in 
Figures 9b, 10c, and 9c, and therefore hp

wv = (1)(2)(3> 
(4)(5)(6)(7)wv describes the dissociation reaction, while 
h™ = (l)(2)(3)(4)(5)(6)(7)xw describes the association 
reaction. The group Www = D3 + + i? 3

w w is a representation of the group W defined by the 
operations 

W1 = (1X2)(3)(4)(5)(6)(7) 

W2 = (134)(2)(5)(6)(7) 

W3 = (143)(2)(5)(6)(7) 

W4 = (1)(25)(34)(6)(7) 

W6 = (14)(3)(25)(6)(7) 

w, = (13)(4)(25)(6)(7) 

Both Aj,wv and A5
XW are achiral, and the steric course of 

this reaction sequence is therefore derived from the set 
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of six reactions, h^W^'^h™' = Wxy. Consulting 
Figure 9d, we note that Wjxv = h^v, w2

xv = x 3
x x -

AJXV-D2
VV , w3

xv = * , x x -A 8
x v -p , v v , w4

xv = x 3
x x- / i 6

x v-
P 8 W 1 W . X V = A1XV-P4VV1 a n d Vv6XV = - ^ X X . / , . X V . ^ W 

Consequently 

S?xv(*,xw, V v v ) = 2^!xv + 4/i5
xv 

C. Polytopal Isomerization of IrH3(PRs)3. Certain 
phosphino iridium hydrides of the type IrH3(PR3)3 exist 
in two polytopal forms, facial (see Figure 11a and 
meridial (see Figure lib).2 2 Upon heating in solution, 
the facial isomer rearranges to the meridial isomer, 
and Muetterties23 has suggested that this process may 
proceed via five-coordinate intermediates, IrH3(PR3)£. 
We shall examine the possibility of checking the validity 
of this mechanism using labeling techniques. 

Hydride ligands are labeled Ai, A2, and A3 and phos-
phine ligands are labeled B4, B5, and B6. The skeletal 
positions are indexed in Figure 1 Ic and d. Assuming 
that the isomers have C31. and C2„ symmetry, Vvv = 
C3

VV and Xxx = C2
XX. The groups V and X contain 

the operations 

P1 = (1)(2X3X4)(5)(6) 

U2 = (123X456) 

P3 = (132)(465) 

Xl = (1X2X3X4X5X6) 

x2 = (1X23X45X6) 

The final step of Muetterties' proposed mechanism 
is shown in Figure l ie, and the skeletal positions of 
the postulated intermediate configuration are indexed 
in Figure 1. Thus W w w = Z)3

WW + R3
WW, and W 

is defined by 

W1 

W2 

W3 

W4 

W5 

W6 

= (1X2X3X4X5X6) 

= (123X4X5X6) 

= (132X4)(5X6) 

= (1X23X45)(6) 

= (13X2X45X6) 

= (12X3X45X6) 

Neglecting any further intermediate configurations, 
we examine the reactions in Hww to ascertain the pos­
sible changes in stereochemistry which might accom­
pany transformations of the reactant configurations 
into intermediate configurations having geometry W. 
Using eq 19 and 22 

Dwv = |1/C3-6)J {1-1-3! • l*-3! • 1»} = 2 

Z W = {1/(3-6 + 3-6)) X 

{(1-1 + 0-0)3!-l3-3!-l3} = 1 

Thus regardless of the mechanistic pathway connecting 
the reactant and the postulated intermediate configura­
tions, only two steric courses exist, and in an achiral 
environment they will be indistinguishable. Ligands 
will become completely "scrambled," and should 
the postulated intermediate exist, the net isomeriza­
tion reaction will completely lack stereospecificity. 

(22) J. Chatt, R. W. Coffey, and B. L. Shaw, / . Chem. Soc, 7391 
(1965). 

(23) E. L. Muetterties, Accounts Chem. Res., 3, 266 (1970). 
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Appendix 
In this section eq 22, which enumerates diastereomeric 

reactions, is derived. A similar result has been de­
rived by Ruch, Hasselbarth, and Richter.24 The 
derivation provided here is analogous to the proofs of 
theorems given in the Appendices of ref 5 and 7 which 
provide formulas which enumerate differentiable per-
mutational isomerization reactions. Familiarity with 
these proofs should aid in understanding the present 
derivation. Although eq 22 is a general result, the 
following derivation does not allow for the case where 
all operations in F v v and 1FWW which represent in­
version of configuration also represent rotation of 
configuration. In this case, two reactions are diastereo­
meric if and only if they are differentiable in a chiral 
environment, and the limitation is therefore of no con­
sequence. 

We shall assume that the group of allowed permuta­
tions is defined by 

H= Z Sni 
t = i 

/ < 3, but the case for an arbitrary / > 3 may be treated 
in the same fashion. Before proceding with the deriva­
tion, we must express the relationship between dia­
stereomeric reactions in a mathematically concise 
manner. If reactions in the set Hvw are to be enumer­
ated, V and W are the permutation groups whose 
representations Vvv and w^'w are proper configura-
tional symmetry groups. We define the sets V and 
W to be subsets of the groups F and 11', respectively, 
such that V1' e V and w/ e W' if and only if vt'

vy and 
w / w w represent inversion of configuration. Next, we 
define a permutation group II '(F, TF), 11'(S4, W1) e II ' (F, 
W), whose elements permute elements hk

vw in Hvw 

according to 

W(vt, •Wj)ht = vi-hk-H)j-
J 

where vt e V and wu t W must either both be elements in 
V and W, respectively, or both be elements in V and 
W, respectively. Thus 

|n ' ( f , Tf)| = \V\\W\ + \V'\\W'\ (Al) 

The reader may verify that II(F, 11') is a well defined 
group with a pioduct operation defined by 

U'(vu w,)-W(vk, W1) = W(Vf vk, w--W1) 

The group I I ' (F , Tf') may be used to rigorously 
define diastereomeric reactions; / z {

w and /!,vw are 
diastereomeric reactions if and only if 

W(vu Wj)ht ^ hj 

for all II'(Di, Wi) t W(V. W). The number of diastero-
meric reactions, Dv>w>, is the number of equivalency 
classes generated in H if hk, hi t i /a re equivalent when 

W(Vi, w,)hk = h, 

for some W(vu W1) t W(V, W). The number Dyw> 

(24) E. Ruch, W. Hasselbarth, and B. Richter, Theor. CMm. Acta, 19, 
288 (1970); E. Ruch and W. Hasselbarth, private communication. 
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may be calculated using Burnside's Lemma26 

1 ^ 
D VW = [11'(F, TF)[ n'(w, wi)(W(v,w 

X(VI,*>J) (A2) 
W) 

where xi^u %) is the number of hk in H which II'(S4, W1) 
leaves fixed, i.e., the number of hk in H for which 

hk = 11'(S4, Wj)ht ^Vi-h^wf1 

or equivalently 

Accordingly, x(i>u ®i) = 0 unless vt and Hi1 have identical 
generalized cyclic type, and if S, and w} both have 
generalized cyclic type (T1J1, ...Jm; h, k2, . . ., kni; 
h, h, • • •, /„,)> then 

TXi nz nz x(Vi, W1) = n Uvip1') n < w o n (M^) (A3> 
P = I 9 = 1 r = l 

(25) F. Harary, "Graph Theory," Addison-Wesley, Reading, Mass., 
1969,p 181. 

Since x(s» wi) is dependent only on the generalized 
cyclic type of vt and Ui1, and x(̂ <> #j) ^ 0 if and only if 
Vi and Wj have identical generalized cyclic type, the 
summation in eq A2 may be changed to one over 
the generalized cyclic types of the operations in 
V, W, V, and W. Let /iv 

hw J1J2. . Jni,hlki. . .kn2,hh. . . I711 

h™ hit' tl*!. . .*n],fl!s. . .!n|1 a i l d 

be the number of operations 
in V, V, W, and W, respectively, having generalized 
cyclic type (h,ji, . . . , . /„, ; h,h, . ..,knt; h,h, . . . , In,). 
Then by substituting eq Al and A3 into eq A2 and using 
the new summation extending over all generalized 
cyclic types of permutations in F, W, V, and W, we 
obtain eq 22. 

During the course of this derivation we have as­
sumed that all elements in Hvw represent reactions. 
For the case V = W, some elements in /fww do not 
represent reactions but represent rotation of con­
figuration, and therefore the number of diastereomeric 
reactions is ZV'w" — 1. 

Effects of Additional Ring Fusions and Binding to Metal 
Atoms upon the Cyclooctatriene—Bicyclooctadiene 
Equilibrium1 

F. A. Cotton*2 and G. Deganello3 

Contribution from the Department of Chemistry, 
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. 
Received May 22, 1972 

Abstract: The hydrocarbons bicyclo[6.3.0]undeca-2,4,6-triene (1) and bicyclo[6.4.0]dodeca-2,4,6-triene (3) have 
been prepared by reaction of dilithiocyclooctatetraene with 1,3-dibromopropane and 1,4-dibromobutane, re­
spectively. 1 and 3 could not be isolated pure, but instead 1 was obtained mixed with its tautomer tricyclo-
[6.3.0.02'7]undeca-3,5-diene (2) and 3 was obtained mixed with its tautomer tricyclo[6.4.0.02'7]dodeca-3,5-diene 
(4). The kinetics and equilibrium of the 1 -*• 2 conversion have been studied. The rate constant at 20° (extrapo­
lated from measurements at 34 and 58°) is 1.6 X 10-5 sec-1. Assuming a frequency factor of 1013 the Arrhenius 
activation energy is 24 ± 1 kcal/mol. At 58° the equilibrium constant, K = [2]/[l], is ~ 3 3 . The equilibrium 
molar ratio 3:4 at 114° is approximately unity. From pmr spectra and other considerations the probable molecu­
lar structures and ring conformations are deduced. The systems 1-2 and 3-4 react with Fe2(CO)9 and Mo(CO)3-
(NCCH3)3 to form a variety of crystalline derivatives, all of which have been characterized as to gross structure 
(i.e., connexity of bonds but not conformational details) by ir and pmr spectra. These derivatives, which will be 
suitable for X-ray crystallographic studies of structural details, are the following: (2)Fe(CO)3, (2)2Mo(CO)2, 
(I)Mo(CO)3, (4)Fe(C0)s, (4)2Mo(CO)2, (3)Fe2(CO)6, (3)Mo(CO)3. Yields of the various derivatives run parallel 
to the intrinsic relative stabilities of the tautomers in each of the pairs, 1-2 and 3-4. 

I t was nearly 20 years ago that Cope and coworkers4 

first studied an equilibrium of the type 

Ca 
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for the case where X = X ' = CH2, i.e., for cycloocta­
triene and its tautomer bicyclooctadiene. They re­
ported that the equilibrium ratio a/b is -~6 at 80-100°. 
More recently, Huisgen and coworkers5 reinvestigated 
this system (for which they found a ratio of ~ 8 at 
60°) and 11 others with a variety of X and X' groups. 
Variations in X and X ' were found to influence the 
ratio greatly, changing it over a range of >~104. Huis­
gen and coworkers considered several factors which 
might be expected to influence the position of equilib­
rium, but concluded that no entirely satisfactory expla­
nation for the observed facts could be found within the 
framework of their considerations. 

(5) R. Huisgen, G. Boche, A. Dahmen, and W. Hechtl, Tetrahedron 
Lett., 5215 (1968). 
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